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A survey of the research devoted to studying the propagation of small perturbations 
in a fluid with gas bubbles is given in [i]. Obtained in these papers, in particular, are 
dispersion relations; the influence of dissipative mechanisms as well as diverse factors 
such as polydisperseness of the mixture, polymer admixtures in the fluid, etc., is clarified. 
The investigations mentioned were performed on the basis of the linearized equations of 
motion. Meanwhile, it is known that a fluid with gas bubbles is a nonlinear dispersing 
medium. Consequently, a dispersion relation for nonlinear waves is obtained in this paper 
in the absence of dissipation, and the frequency and amplitude dependence of the phase veloc- 
ity are computed for waves passing through a given equilibrium state of the medium. 

According to [2, 3], stationary nonlinear waves in a fluid with gas bubbles with 
hydrodynamic nonlinearity, the nonlinearity of the radial fluid motion around the bubbles, 
and the nonlinearity of the fluid equation of state taken into account are described by 
solutions of the equation 

(dp~ ~ 2p ~ (v (p))I/3 (v~)-~ (If (p) + ~.) 
"d~] = - -  (t + mpV (p))2 mC~vpo ~--- F (p; D, tie) , 

where  m V  = Ci/C ~ - -  p/C~ - -  (1 + n (p - -  po))-~/"; H mp~ V 1-v + pi_j_ 1 - npo + p. C.~ C~ ; He 

is an amplitude parameter, Cl, C2, C s are dimensionless mass, momentum., and energy fluxes 
of the combined phase deformation, p~, p~, c o are equilibrium values of the pressure, dens- 
ity, and speed of sound in the fluid, R0, Ko are equilibrium values of the bubble radius 
and volume concentration of the gas, 7, n are the adiabatic indices for the gas and the 
fluid. Introduced here are the dimensionless variables q = x - Dt, D' = Dc0, x = x'm0/c 0, 
t = t'c00, V = (R/R0) 3 ' , 2 , 2 = K0/(l- K0), pn - , p = pp0c0, p~ = p0P0C0, m = 1 + n(p P0), m~ = 

! ! 2 3yp0/p0R0, C~ = Di(I - K0) 2, C 2 = P0 + (I - K0)D 2. 

Following [4, 5], we find the length of the nonlinear periodic wave by analogy with 
linear theory: 

;~ --'-- ~. (D ~, He) = 2 .f d p /  ] /  F (p; D,  tlo) 
Px 

( P l  and P2 a r e  t h e  m i n i m a l  and m ax i m a l  p r e s s u r e s  in  t h e  w a v e ) ;  t h e n  t h e  wave number  and 
f r e q u e n c y  a r e  d e t e r m i n e d  in  t h e  u s u a l  manner :  k = 2 ~ / k ,  ~ /~o  = Dk(D, H0) .  T h i s  i s  i n d e e d  
the dispersion relation for nonlinear waves which we represent as 

0) = ~ D  C~m"lP" ~ t -4- OV dp  (1 )  

Pl 

In the linear case the periodic solution is p - P0 = a cos ~, and (i) goes over into the 
known dispersion relation for linear waves: 

2 

(2) 
T 0  = (po) ( ~  - (p0)) ' 

where  c e and c f  a r e  t h e  e q u i l i b r i u m  and f r o z e n  s p e e d s  o f  sound .  The d i s p e r s i o n  r e l a t i o n  
(1 )  h a s  an i m p l i c i t  f o rm and shows an e s p e c i a l l y  n o n l i n e a r  d e p e n d e n c e  o f  t h e  f r e q u e n c y  on 
the phase velocity and amplitude. To carry out a quantitative analysis we limit ourselves 
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Fig. 1 

to the construction of the nonlinear dependence (i) for waves passing through a given equilib- 
riumstate: p~ = l0 s Pa, K 0 = 10 -4 , c o = 1.5 103 m/sec (y = 1.4, n = 7.15). 

We note first that for a fixed double wave amplitude P2 - Pl = a, the specific volume 
of the mixture v = ~(P0 - P)/D2 + v0 grows without limit for p ~ Pl as D 2 ~ 0 (P2 § P0, 
Pl ~ P0 - a). Consequently, although for any fixed amplitude as D + 0 m/~0 +0, the solution 
starting with a certain critical value of D,(a) actually emerges outside the scope of the con- 
straints of the model under consideration. 

The results of a computation of (i) are presented in the figure where a is the frequency 
and amplitude dependence of the phase velocity of the waves whose velocity is less than 
Ce(P0). According to the computation, in the wave velocity range under consideration, for 
which the relative flow of the medium is subsonic ((u - D) 2 < c~(p)), the wave frequency dim- 
inishes as the amplitude increases at a fixed velocity; b is the dependence of the phase 
velocity on the frequency and amplitude for waves whose velocity is greater than cf(p0). 
The far boundary of the dispersion surface (curve 2) corresponds to waves whose amplitude 
is maximal but does not exceed the limit from [2, 3]. According to the computation, for 
the waves under consideration for which the relative flow of the medium is supersonic, the 
wave frequency grows with the increase in amplitude for a fixed velocity~ The existence 
of periodic waves in which the relative flow of the medium goes over continuously from the 
supersonic to the subsonic regime and conversely is shown in [2]. It turns out here that 
these waves passing through a given equilibrium state are propagated at velocities exceeding 
cf(p0). For convenience, the curve 3 in the figure displays the dependence between the fre- 
quency, amplitude, and velocity of such substantially nonlinear waves. In contrast to waves 
in which the relative flow of the medium is supersonic, the passage to the limit as D 
cf(p0) holds in the case being considered, i.e., as D diminishes, the point (D, ~/~0, a/P0) 
of the curve 3 tends to the point (cf(p0), ~/w0, a/P0) that corresponds to a wave being propa- 
ated at the frozen speed of sound. The relative flow of the medium in the latter is subsonic 

N 

but m/m 0 = 8, a = l13p0. 

In the velocity range (Ce(P0), cf(p0)) the stationary perturbations are solutions for 
which the dispersion relation degenerates into a nonlinear dependence between the velocity 
and the amplitude. The dispersion dependence (2) is shown by line i for comparison. 

In conclusion the author is grateful to V. K. Kedrinskii for attention to the research 
and discussion of the results. 

i. 

LITERATURE CITED 

A. A. Gubaidullin, A. I. Ivandaev, R. I. Nigmatulin, and N. S. Khabeev, "Waves in 
fluids with bubbles," Science and Engineering Surveys. Fluid and Gas Mechanics [in 
Russian], Vol. 17, VINITI, Moscow (1982). 

689 



. 

3. 

4. 

5. 

S. I. Plaksin, "On stationary solutions of the motion equations of a fluid with gas 
bubbles," Prikl. Mekh. Tekh. Fiz., No. i (1983). 
V. Yu. Lyapidevskii and S. I. Plaksin, "Shock structure in a gas--fluid meidum with 
a nonlinear equation of state," Dinamika Sploshnoi Sredy, No. 62, Inst. Gidrodin., Sib. 
Otd. Akad. Nauk SSSR, Novosibirsk (1983). 
P. Bkhatnagar, Nonlinear Waves in One-Dimensional Disperse Systems [Russian translation], 
Mir, Moscow (1983). 
G. B. Whitham, Linear and Nonlinear Waves, Wiley, New York (1974). 

STABILITY OF A DUSTY NONISOTHERMAL GAS JET 

E. P. Kurochkina and M. P. Strongin UDC 532.517.6.013.4 

Interest in modeling the behavior of gas-dispersed flows with large parameter gradients 
has increased greatly in recent years for several reasons. On the one hand, there are an 
increasing number of practical uses for such flows. Examples of this are found in the chemical 
industry and in the area of environmental protection (propagation of aerosols). On the other 
hand, the interest also stems from improved possibilities for calculating such flows. In 
this regard, investigators are especially attracted to the problem of the stability of gas- 
dispersed flows. The solution of this problem:would in several cases make it possible to 
obtain estimates of the critical parameters corresponding to the transition from laminar 
to turbulent flow. Calculations of stability performed in [i~3] for:dusty:isothermal gas 
flows showed that a flow may be appreciably stabilized by particles (the critical Reynolds 
numbers may increase by several orders of magnitude under certain conditions). No calculas 
have been made of the stability of thermally stratified gas flows with a disperse phase, 
although such calculations would most likely have practical value. Here, we examine the 
stability of a dusty plane jet with. a temperature differing considerably from the medium 
in which the jet is flowing. 

The flow of a submerged viscous nonisothermal gas-dispersed jet is described by the 
system of Navier-Stokes equations with allowance for the gas-particle interaction, which 
is modeled by a term of the Stokes force type. As was noted in [1-3], an important parameter 
is ~ = T/c 0 , where ~ = L/(Um~C ) (L and U m are the characteristic scales of length and veloc- 
ity of the jet, while ~ and C are the wave number and the phase velocity o~ the perturbations). 
The quantity ~0 = P0 d2(18Dg) is the time of Stokes relaxation relative to the particle ve- 
locity (P0 is the density of the particle material, d is the particle diameter, and D- is 
the viscosity of the gas). The case ~ << i is usually realized in actual dusty flows. ~ The 
following evaluations can serve as an illustration. For particles of the diameter 10 -4 m 
and density p = 104 kg/m 3 with a hot-air viscosity ~g = 2"10 -2 kg/(m.sec), the relaxation 
time is ~0 = 5/18 sec. At the same time, for typical jet scales L = 10 -2 m, U m = 2.102 m/,~ �9 
sec, and ~C = 10 -2 (from the results of our study), ~ z 5-10 -3 sec and ~ = 18"10 -3 . Thus, 
the charcteristic fluctuation velocities of the partlcies are considerably less than the 
fluctuation velocity of the gas. As a result, in the analysis of stability presented, here, 
the disturbance of the particles can be ignored. Since the parameter ~i = 18pgL2/(p0 He d ~) 
depends on the Reynolds number Re = LUm/~g (v~ ~ 9g/Ng, 9g is the density of the gas), it 
is convenient to use it as an independent varible (in [2-4], ~ was assigned; this led to 
obvious problems in calculating neutral curves with ~i<<I) . As the characteristic param- 
eter in the present study, we take A = 18~(L/d) = (6 is the volumetric concentration of part- 
icles). For the above parameters, 18(L/d) = 1.8-102 and with a change in ~ from 10-2to 10 -2 , 
A may incrase from 1.8 to 1.8.103. 

Proceeding on the basis of the Navier-Stokes equations for a nonisothermal flow and 
using Stokes' law to describe the effect of the particles on the gas flow, we can obtain 
the following system of equations: 

e v  op 2 0 / ou~ l 0 ou ov 2 0 [ ~ ( o v  + + ( U - - U o ) ,  
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